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Abstract We develop a general measure of estimation ac-
curacy for fundamental research designs, called v. The v
measure compares the estimation accuracy of the ubiquitous
ordinary least squares (OLS) estimator, which includes sam-
ple means as a special case, with a benchmark estimator that
randomizes the direction of treatment effects. For sample
and effect sizes common to experimental psychology,
v suggests that OLS produces estimates that are insufficient-
ly accurate for the type of hypotheses being tested. We
demonstrate how v can be used to determine sample sizes
to obtain minimum acceptable estimation accuracy.
Software for calculating v is included as online supplemen-
tal material (R Core Team, 2012).

Keywords Estimation accuracy . Replicability . Statistical
power . Improper linear models

Introduction

Research in psychology is currently facing a quantitative crisis.
Peer-reviewed journals are rife with contradictory findings,
potentially attributable to underpowered studies that result
in spurious rejection (or acceptance) of hypotheses (e.g.,
Ioannidis, 2005, 2008; Maxwell, 2000, 2004). Findings of
precognition and premonition that have achieved statistical
significance and survived peer review (Bem, 2011) have raised

the controversial question of when some studies should be
believed, while others not. Failures to replicate well-known
results have created what some researchers are calling a “crisis
of confidence” (Pashler & Wagenmakers, 2012). When evalu-
ating research, how do we know whether our findings are
accurate and genuine?

We offer a new perspective on this “crisis” that does not
depend upon unreported researcher activities, such as publica-
tion bias (Francis, 2012a, b; Ioannidis, 2008) or researcher
degrees of freedom (Simmons, Nelson, & Simonsohn, 2011).
Nor does our approach concern itself with null hypothesis
testing or traditional methods of statistical inference. Rather,
we examine the accuracy of parameter estimation for funda-
mental research designs in psychology. We study estimation
accuracy because of its pertinence to the following question:
Over repetitions of an experiment, how good are the estimates
and how much do they vary? Satisfactory estimation accuracy
is a prepotent problem. If one’s estimates are inaccurate under
reported conditions, it is a moot question whether researcher
degrees of freedom have been used or publication bias has
occurred. Conversely, if a study is free of researcher degrees
of freedom and publication bias, it is still meaningless if esti-
mation accuracy is poor. Put differently, the quality and value of
our experimental conclusions hinge upon how accurately pop-
ulation values of interest, such as true means, can be estimated.

We demonstrate that for many areas of psychology, study
conditions are such that standard estimation methods, such
as sample means and regression coefficients, have unaccept-
ably poor accuracy. We compare these methods against a
benchmark estimator we call random least squares (RLS).
RLS determines the relative values of its estimates at ran-
dom. That is, RLS yields literally random conclusions about
whether data show treatment effects. Yet, for sample and
effect sizes common to psychology, we show that RLS
estimates the population values of interest more accurately
than do sample means or linear regression coefficients. We
present a measure called v that tracks how often a researcher
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can expect standard estimation methods to be more accurate
than RLS. Under one interpretation, v is the probability of
standard methods being more accurate than RLS. We argue
that studies undertaken with low v cannot meaningfully
establish patterns of treatment effects and should not be
the basis of theoretical conclusions.

To underscore the relevance of these conclusions for ex-
perimentalists, imagine a researcher in the physical sciences
who routinely uses some piece of lab equipment. After de-
cades of research, the manufacturer of that equipment informs
the researcher that it is faulty and gives readings that are
essentially pure noise under laboratory conditions that fall
within accepted practice in the field. Surely, the researcher
would immediately wonder how many of his or her findings
over the years were actually true. If many other labs were also
using the same faulty equipment, it would be a scandal. Yet
our analysis suggests we are in exactly that position in many
areas of psychology. The statistical equipment that researchers
routinely use is too inaccurate under some conditions, and
these conditions fall within guidelines of accepted practice. As
such, nothing prevents the publication of statistically signifi-
cant findings that are potentially meaningless. While the de-
bate over whether to trust experimental results often focuses
on the quality of experimental procedures, publication bias, or
the meaning of a p-value, we show that, absent all of these
issues, there remains a basic problem: Some findings should
not be trusted because sample means or regression estimates
are too inaccurate under the sample and effect sizes at which
the experiment operates.

We focus on evaluating the estimation accuracy of the
ordinary least squares (OLS) estimator, due to its ubiquity
for evaluating theory in psychology. For example, whenever
a researcher assigns participants to different groups and uses
the group mean responses on some dependent variable to
represent the population means, he or she is using OLS.
Thus, the two-sample t-test and ANOVA procedures rely on
the OLS estimator. OLS is also the default estimator for
linear regression. While many accuracy metrics are possible,
we compare the accuracy of OLS with that of RLS using
mean squared error (MSE), a “gold standard” measure of
estimation accuracy in the statistics literature (Lehmann &
Casella, 1998). MSE is defined as the expected sum of

squared differences between a set of p-many estimates, bbi ,
and the corresponding population values, βi,

MSEbb ¼ E
Xp
i¼1

bbi �bi
� �

2

 !
: ð1Þ

Put differently, MSE is how close, on average, an estima-
tor is to the truth.

Whether OLS or RLS is expected to be more accurate de-
pends on the true population values of interest, something the

researcher does not know. We solve the problem of how to
compare accuracy using a measure that we denote v. Given an
upper bound on overall effect size, vmeasures the proportion of
all possible population values for which OLS is more accurate
than RLS. If all population values are equally likely, then v is the
probability of OLS being more accurate than RLS. Thus, v
ranges from 0 to 1, with higher values of v suggesting more
robust accuracy. For sample and effect sizes common to exper-
imental psychology, v suggests that OLS produces estimates that
are insufficiently accurate for the type of hypotheses being
tested. We demonstrate how targeting minimum standards for
accuracy such as v>.5 (i.e., one’s estimates are better than the
guessing benchmark at least half the time) can prospectively
determine minimum acceptable sample sizes for general exper-
imental designs in psychology. In the following sections, we lay
out the logical purpose of having an accuracy benchmark
against which to compare OLS. We then describe the logic
behind our choice of benchmark and how it is constructed. We
offer several illustrative examples of our benchmark. Finally, we
present the v measure and discuss how it can be used.

The need for an accuracy benchmark

As was noted above, MSE is a standard metric of estimation
accuracy in the statistical literature. At the same time, MSE
values, in and of themselves, are not illuminating for under-
standing the quality of psychological data because it is
unclear that we have, or could have, precise standards of
satisfactory MSE values. Clearly, less MSE is better because
we would like our estimates to be accurate. Beyond that, it is
difficult to construct anything better than an ad hoc standard
for how small MSE need be for experimental results to be
satisfactory, let alone to tailor that standard according to
research questions and practices in various areas of the field.

One difficulty when determining adequate levels of accu-
racy is that theories in psychology are usually not sufficiently
quantified to make point predictions of population values.
Where the dependent measure is a Likert scale rating, it is
not always clear that a point prediction is evenmeaningful; the
mean scale response may make sense to the researcher only as
a way of establishing that experimental groups respond dif-
ferently. We do not view this level of quantification as a
problem. Rather, it is a feature of many psychological hypoth-
eses. Key hypotheses can be formulated simply as directional
statements about effects. Examples might be “people primed
with words associated with the elderly will subsequently walk
slower” or “infants at six months are better at recognizing
primate faces then infants at 9 months.” Such directional
hypotheses, if true, are highly informative. They force us to
propose specific mechanisms that could explain the
effects—mechanisms that could confirm and disconfirm var-
ious theories and propose new theories. Directional
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hypotheses are important to psychology, and indeed, they are
often what researchers care about the most.

We are far less often in the position to hypothesize precise
population values. We may predict, for example, that the
experimentally primed group will walk more slowly than a
control group, but we probably cannot hypothesize the exact
mean walking speed for each group. Similarly, one might
hypothesize that a regression coefficient will be different than
zero with a specific sign in light of other variables in the
model. Much less often, if at all, do psychological theories
allow us to specify and test a priori point predictions for the
coefficients. Directional hypotheses do, however, specify rel-
ative values of the parameters of interest. When one hypoth-
esizes a directional effect—for example, that the population
mean of one group will be larger than the population mean of
another—it follows that the sample means of the experimental
groups are predicted to show this pattern. In factorial designs,
hypotheses about main effects and interactions specify how
most or all of the parameters will be ordered. While psycho-
logical theories may not supply exact values, we believe that
most researchers are willing to hypothesize the sign of a
regression coefficient or the direction of a difference in group
means. Even if that does not lend to specifying parameters in
an absolute sense, it does lend itself to specifying relationships
among the parameters.

The estimated relationships among population values are
thus highly important for testing psychological theories, and
sometimes these values are of singular interest. Yet, as was
described earlier, the quality of experimental results also
hinges on estimation accuracy, which is measured in an
absolute sense with MSE. For example, we would not want
to make much of the finding that one sample mean was
larger than another if we somehow knew that those sample
means were far from the population values. One way to
address these issues is to specify benchmarks against which
to compare the accuracy of OLS. Suppose that there was an
alternative method for estimating population values that
psychological theorists, primarily concerned with relative
population values, could agree should not be more accurate
than standard methods. Perhaps this alternative promises to
yield different or even nonsensical relationships among the
parameter estimates. If the MSE of this alternative method
could be calculated, an absolute standard of accuracy for
OLS, under a given set of experimental conditions, would
be that its MSE should be less than the MSE of this bench-
mark. The logic is simple: If we, as specialists, agree that the
benchmark is an unsatisfactory method for establishing
treatment effects, it would be troubling if the benchmark
were more accurate at estimating the population values of
interest than our current methods.

Following the above logic, we propose a benchmark for
OLS called random least squares (RLS). RLS determines
certain features of the relationships among the parameter

estimates at random. As we will describe in detail in the
following section, RLS specifically fixes the relative signs
and magnitudes of its estimates, the very relationships that
determine whether and in what direction treatment effects
exist, randomly without use of data. Since psychologists are
primarily interested in estimating the relative population
values—that is, directional treatment effects—it is problem-
atic if there exists an estimator that scrambles this informa-
tion yet gets closer to the truth, on average, than do typical
estimates in the field.

Of course, if one has high-quality data because of large
samples and large effects, then standard methods of estima-
tion will be more accurate, on average, than such a bench-
mark. Indeed, one may have the intuition that standard
methods should not lose for even small effects and sample
sizes. In the following sections, we precisely develop RLS
and solve for sample and effect sizes for which it is more
accurate than OLS on average. Such sample and effect sizes
indeed exist, and perhaps surprisingly, they are not uncom-
mon to published research in psychology.

Random least squares

Before developing RLS, it is helpful to remind the reader
that our analysis deals with estimating the standard linear
model, y ¼ Xb þ e, where X is a fixed (nonrandom) n×p
design matrix, β is a p×1 vector of population weights, and
e � 0;σ2In�nð Þ with i.i.d. sampling. Note that we do not
assume a specific distributional form for e , such as the
normal distribution. We assume that X is of full rank and
that every entry of β is real-valued. Without loss of gener-
ality, we assume that observed values of y and all continuous
predictor variables in X are standardized in z-score format,
as in a standardized multiple regression. We assume orthog-
onal coding for qualitative predictors. For our one-way
ANOVA examples, we assume that X is coded for qualita-
tive variables such that OLS becomes the vector of sample
means—that is, cell means coding (see Muller & Fetterman,
2003; Maxwell & Delaney, 2003).

The default estimator for the linear model is OLS, denot-

ed bbOLS ; which, using the standard matrix notation, is de-
fined as

bbOLS ¼ X
0
X

� ��1
X

0
y: ð2Þ

Depending upon the design of X, sample means, regres-
sion, and correlation coefficients are special cases of OLS.

Intuitively, we can think of OLS as the best way to
portion out weight to the independent variables in an exper-
iment and determine which is most important within the
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sample. We can also think of OLS as the best way to assign
weight to different experimental conditions and determine
whether one treatment is more important than another. As
was explained earlier, experimental conclusions drawn from
data are often, if implicitly, statements about the relation-
ships among OLS coefficients, be they sample means or
regression coefficients. That is, the direction and relative
importance of experimental effects are determined by the
relative signs and magnitudes of the OLS coefficients.

Our concept of a benchmark for OLS is inspired by the idea
of improper linear models (see Dawes, 1979). Rather than
best-fitting the sample, improper linear models assign weight
to the independent variables according to a priori decision
heuristics that the researcher chooses without the use of data.
For example, a great deal of research has shown that a simple
equal weighting of all independent variables often outperforms
OLS on future samples (Dana & Dawes, 2004; Dawes &
Corrigan, 1974; Wainer, 1976). Recent work has thoroughly
analyzed the properties of improper linear models as estimates
of β (Davis-Stober, 2011; Davis-Stober, Dana, & Budescu,
2010a, b). Specifically, one could express an a priori decision
heuristic as a vector a. For example, if one’s heuristic is to
equally weight all of p-many independent variables, that heu-
ristic could be represented by an a vector in which all entries
are equal to 1. Such a vector captures the decision heuristic’s
policy of equally weighting all predictors. This vector could
not, however, serve as a sensible estimate of β; indeed, the
coefficients of a in this example set a scale that does not
conform to the scale of the data. To solve this problem, one
could multiply a by a single number k, calculated from exper-
imental data, to rescale the values of a—hence, ak. Obviously,
multiplication by a scalar will not change the relative values of
the decision heuristic’s weighting policy.

One choice of k that has been well-studied in this context is

the least squares scaling factor k ¼ a
0
X

0
y

a0X 0Xað Þ (Davis-Stober,

2011; Davis-Stober et al., 2010a, b). This choice of k mini-
mizes the squared error of ak for one’s sample, subject to any
fixed a. To reiterate, the vector a is chosen independently of
any observed data; data can be used only to determine the
value k, which scales the final estimates, ak, but, obviously,
cannot change the relative signs and relative magnitudes that
are determined by a. Indeed, ak can be considered as a special
case of general constrained least squares estimation
(Amemiya, 1985; Chipman & Rao, 1964).

Following from this logic, we create a performance
benchmark for OLS by using this procedure with a chosen
randomly, a procedure we call RLS. More precisely, let the
entries of a be sampled according to a uniform distribution
over an interval and, once all of the entries of a are sampled,
this randomly determined a vector is multiplied by the scalar

value k ¼ a
0
X

0
y

a0X 0Xað Þ . Due to our choice of scaling factor, k, the

entries of a can be sampled uniformly from any symmetric
interval centered at 0. The length of the a vector is factored
out by k; for example, for any given X and y, an a vector with
all entries equal to 1 will provide precisely the same final RLS
estimates as an a vector with all entries equal to 700. In other
words, RLS determines two important properties at random:
(1) whether any pair of coefficients agree in sign (relative
signs) and (2) the ratio of any pair of coefficients (relative
magnitudes). The relative values of the entries in a are the key
ingredient, not the overall scale; that is set by k using exper-
imental data. In our illustrations below, we select each entry of
a according to a uniform distribution over [−10,10], but we
would obtain the very same results selecting the entries of a
according to a uniform distribution over [−20000, 20000].
When we consider the v measure, for mathematical conve-
nience, we will sample a uniformly from the surface of a unit
sphere of dimension p centered at the origin.

To the extent one is concerned about the relationships
among population values, as with directional hypotheses,
RLS should be an uncontroversial benchmark for accuracy.
By randomizing the relative signs and magnitudes of its
estimates, RLS randomizes conclusions about directional
hypotheses—that is, the relative orderings of coefficients.
The least squares scaling factor, k, which is calculated from
experimental data, allows us to compare OLS and RLS on
the same accuracy metrics but does not change the important
properties of randomness outlined above.

Illustration of RLS

To illustrate the use of RLS, consider a researcher interested in
testing a theory concerning response times of subjects in three
different conditions. According to the theory, the (standardized)
population mean of group 3 (the treatment condition) will be
larger than that of group 1 (control condition), which will be
larger than the population mean for group 2 (the reverse treat-
ment condition)—that is, μ2 < μ1 < μ3. Typically, one would
run a carefully controlled experiment and use the observed
sample means (i.e., OLS) of the three groups as estimates of
the three population means. Once estimated, an appropriate
statistical analysis would be conducted, such as an ANOVA
procedure. But suppose that this researcher decides to apply
RLS instead of sample means. Before running the experiment,
he or she needs three random numbers to form the basis of the
population mean estimates for each of the three treatment
groups. He or she decides to generate random numbers from
a uniform distribution over [−10,10], but of course the length of
the interval is unimportant. For group 1, he or she draws a
random number and obtains 7.2. For group 2, he or she
obtains −2.89, and for group 3, he or she obtains a value of
1.2. These values constitute his or her a vector—that is,

a
0 ¼ 7:2�2:89 1:2ð Þ.
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This researcher, without collecting any experimental data,
already knows that his or her final RLS estimates will not
support the theory he or she is testing. The data he or she
collects will determine the value of k, but no value of k can
change the fact that the estimate for group 3 will lie between
the estimates for groups 1 and 2. Even worse, the relative
magnitudes of the estimates are already determined. The
estimate for group 1 will be six times as large as that for group
3 because 7.2/1.2=6. No value of the scalar k and, therefore,
no amount of data will change this ratio for the final RLS
estimates. Before the experiment has even been run, this
researcher has already arrived at some experimental conclu-
sions about the relative directions and relative magnitudes of
the population means. As a final step, the researcher runs the
experiment and obtains the following (standardized) data:

Group 1 Group 2 Group 3

1.10 −0.83 0.50

0.10 −1.07 1.70

−1.30 −0.94 1.70

0.50 −0.83 2.30

−0.10 −0.59 1.10

−0.10 −0.83 1.71

1.10 −0.83 −0.11

−1.07 −0.95 −0.50

−0.59 −0.82 −0.11

−0.22 −0.70 −0.11

The OLS estimator, assuming cell means coding, for
these data is simply the vector of sample means for the three
groups, x1 ¼ �:08; x2 ¼ �:84 , and x3 ¼ :92 , respectively.
Calculating k for these data yields k=.05. Multiplying k by
the random choice of a yields RLS coefficients of .36, −.14,
and .06 for groups 1–3, respectively. As was expected, the
RLS estimates have scrambled some of the information
contained in the sample. While the experimental data scaled
the final RLS estimates through the k term, the relative
agreement in sign and the relative magnitudes of the ran-
domly determined coefficients in a are preserved. As an
example, for groups 3 and 1, the ratios of the RLS estimates
are equal to :36

:06 ¼ 7:2�:05
1:2�:05 ¼ 6. Raw code for simulating com-

parisons of RLS with OLS is available as supplemental
material, as well as a workable example.

Obviously, RLS is nonsensical science. To the extent a
psychological theory is defined in terms of the relationships
among population means, RLS uniformly scrambles this in-
formation for any experimental data. As the complexity of an
experiment increases, yielding more parameters to be estimat-
ed, the randomizing nature of a greatly increases. For exam-
ple, if there are eight parameters to estimate and RLS orders
them randomly, there is little chance of getting an ordering
representative of the population values. The fact that this

ordering cannot be shuffled by the data starts to represent a
formidable constraint. Yet, as we demonstrate, under sample
and effect sizes common to many areas in psychology, this
researcher using RLS will, on average, be more absolutely
accurate at estimating the population means than will be a
researcher using sample means or, more generally, OLS.

The reader may wonder how, under any circumstances,
OLS could incur greater MSE than RLS. Linearly
constrained estimators, of which RLS is a special case, have
some favorable properties. While biased, meaning that their
average does not equal the true value of β, linearly
constrained estimators have less variance than does OLS
(Toro-Vizcarrondo & Wallace, 1968) and, thus, can
outperform OLS given limited sample and effect sizes
(e.g., Teräsvirta, 1983). OLS is quite sensitive to the sample
on which it is estimated and, for that reason, can be erratic in
future samples due to factors such as measurement and
prediction error. In other words, OLS often overfits the
sample data. Dana (2008) described how improper linear
models like RLS approximate shrinkage estimators that are
conservatively biased toward no effect. The researcher
might rule out the possibility that the true effects are very
large a priori; that is, the population value of R2 is unlikely
to be very large. With such priors, bias can lead to more
efficient estimation. Indeed, if an upper bound can be placed
on the value of R2, the accuracy of such estimates can
always be improved by biasing them toward no effect
(Eldar, Ben-Tal, & Nimirovski, 2005).

From a geometric perspective, RLS can be described as
first randomly selecting a direction, the a vector. The final
RLS estimates will remain on the vector a. Data can impact
the RLS estimates only via the scalar k. This scalar affects
only the length of the final RLS vector, ak, which will tend
to bias the RLS estimates toward “no effect.” Negative
values of k are possible, which will flip all of the coefficient
signs in a but, because k is a scalar, cannot selectively
change them. In this way, we are comparing an estimator,
OLS, which estimates both the direction and length of β
against an estimator that can only estimate the length of β.
In the next section, we solve for the conditions under which
OLS incurs lessMSE than does RLS via a measure we call v.

The v measure

A practical problem for comparing the MSEs of OLS and
RLS is that MSE depends on β itself, which is an unknown
set of population parameters (indeed, if we had this infor-
mation, there would be no need for data; we would know the
truth). Davis-Stober (2011) provided a solution to this prob-
lem by considering all possible values of β and deriving the
proportion that favor OLS over a least squares projection
onto a fixed choice of a in terms of MSE. We use those
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results here to compare OLS with RLS, defining v as the the
proportion of population β favoring OLS over RLS. Thus, v
will range in value from 0 to 1, with values closer to 1
indicating more robust accuracy of OLS. If the researcher is
willing to assume, in a Bayesian fashion, that all possible β
are equally likely, then v is the probability that OLS is more
accurate than RLS (see Davis-Stober, 2011). We argue that
v>.5 is a minimum standard for estimation accuracy. If
one’s estimates are less accurate than our guessing bench-
mark more than half of the time, there is little point in using
them to establish treatment effects. As low as this hurdle
may seem, we show that v<.5, or even v=0, can happen
surprisingly often, particularly when researching effect sizes
conventionally categorized as small and medium (Cohen,
1988).

It is helpful to consider v geometrically. Consider the case
of multiple regression with two predictors. Suppose the total
R2 for this model can be no larger than .16. In other words,
we know, a priori, that our predictors can, at most, provide a
“medium” effect by the Cohen (1988) conventions. Since
we assumed that all dependent and continuous predictor
variables have been standardized (z-transformed), there are
algebraic constraints on how large the true regression pa-
rameters, β1 and β2, can be. If the predictors are
uncorrelated, the set of all possible population parameters
will form the interior of a circle centered at the origin with
radius equal to R=.4. For any given pair of true regression
parameters (any point within this circle), we can directly
compare RLS and OLS in terms of MSE.

Suppose, as in Fig. 1, that the random choice of a for
RLS yielded a=(1, 1). If the population values of the re-
gression parameters just happened to be nearly equal in
magnitude and sign, one would expect this choice of RLS
estimator to be more accurate than OLS, depending upon the
sample size. On the other hand, if the population values
were equal in magnitude but had opposite signs, this choice
of RLS estimator would likely be less accurate than OLS.
As an illustration, the red region in Fig. 1 displays the set of
population β such that RLS incurs lessMSE for this random
choice of a. The v measure is nothing more than the pro-
portion of the interior of the circle that is blue. As sample
size increases, the red region will become narrower; hence,
the blue region will become larger. When v=0, the entire
disk is red and it doesn’t matter what the true population
values are, RLS will always be more accurate, in expecta-
tion, than OLS. This would occur when sample and or effect
sizes are quite small, yet such conditions still yield positive
power values. Conversely, when v=1, the entire disk is blue,
and OLS will always incur less MSE than will RLS. For
more than two predictors, v is the volume of the interior of
the (hyper)sphere comprising all population values, such
that OLS incurs less MSE than RLS (see the Appendix
and Davis-Stober, 2011, for a more general discussion).

One unintuitive result is helpful for calculating v: When
all independent variables are orthogonal, as in a balanced t-
test, balanced one-way ANOVA, or multiple regression with
uncorrelated predictors, then v does not depend on the
outcome of the random choice of a (Davis-Stober, 2011).
That is, no matter what random guess goes into RLS, v will
always be the same in the orthogonal case. Returning to
Fig. 1, different choices of a will orient the red region in a
different direction but, ceteris paribus, will leave its area and
shape unchanged (Davis-Stober, 2011).

When the independent variables are not orthogonal, good
estimates of v can be obtained via a Monte Carlo sampling
algorithm. However, the orthogonal result is particularly use-
ful when one considers that OLS estimates will not be affected
by inaccuracies due to intercorrelations among predictors
(e.g., Kutner, Nachtsheim, Neter, & Li, 2004). In fact, under
our assumptions of homoskedasticity and uncorrelated errors,
OLS achieves minimum variance among all unbiased estima-
tors by the Gauss–Markov theorem (e.g., Bickel & Doksum,
2001). The orthogonal case is thus an optimistic scenario for
OLS in terms of v, and one in which v can be calculated
directly:

Fig. 1 Illustration of the geometry underlying the v argument. Assume
R2≤ .16 and p=2. The circle represents the set of all possible true β
values. Let the single random draw of a under the RLS estimator be
equal to a=(1,1). Then, assuming a fixed sample size, the red region
corresponds to the set of all population β in which RLS incurs less
MSE than does OLS for this particular random choice of a. Likewise,
the blue region is the set of all β in which OLS incurs less MSE than
does RLS for this choice of a. The v measure is the proportion of the
circle that is blue
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v ¼ 2cos að Þ* pþ2
2

� �
ffiffiffi
p

p
* pþ1

2

� � 2F1
1

2
;
1� p

2
;
3

2
; cos2 að Þ

� �
� sin að Þp�1

	 

; ð3Þ

where a ¼ cos�1 1�zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2z 1�zð Þ

p
� �

; z ¼ g�
ffiffiffiffiffiffiffiffi
g�g2

p
2g�1 ; g ¼ min

p�1ð Þ 1�R2ð Þ
n�pð ÞR2 ; 1

� �
;

2F1 �; �; �; �ð Þ is the Gaussian hypergeometric function and Γ(·) is

the gamma function. Equation 3 does not provide much
intuition, but it is a closed-form, analytic solution and is easily
calculated using R code (R Core Team, 2012) available as
supplemental material to this article. Furthermore, v is a func-
tion of just three quantities with intuitive importance: total
sample size (n), number of independent variables (p), and the
population value of R2. R2 is a measure of effect size for the
entire model—that is, the proportion of variance explained.
The vmeasure and, thus, accuracy increase as sample size and
effect size increase but decrease as the number of independent
variables becomes large.

It is important to point out that v requires only standard
homoskedasticity assumptions and does not require any
assumptions regarding the specific underlying distribution
of the error term in the standard linear model. Hence, while
an ANOVA requires a normality assumption, this is not
required for v. Full details of the derivation of v can be
found in the Appendix.

Using v to determine sample size

Assuming a fixed type I error rate, statistical power (Cohen,
1988) is a function of the same quantities as v and ranges in
value from 0 to 1. Although we assume normality to calculate
power for the following graphs, v does not require this assump-
tion. To see how the two measures compare, Figs. 2 and 3 plot
v (the hashed line) against statistical power for an omnibus test
with an α-level of .05 (the solid line) at different effect sizes as
a function of sample size and numbers of population values to
be estimated. The three rows of Fig. 2 represent 3, 6, and 9
population values, and the three columns represent conven-
tionally “small” (R2=.02), “medium” (R2=.13), and “large”
(R2=.25) true effect sizes (see Cohen, 1988). Likewise, the
three rows of Fig. 3 represent 11, 14, and 18 population values
under these same effect sizes.

The reader should note that we are referring to the statis-
tical power of the F-test for the full model under consider-
ation. See Maxwell (2004) for alternative definitions of
power under the linear model.

Recall that, for ANOVA designs, the common f 2 effect
size measure is related to R2 via the identity f 2 ¼ R2

1�R2.

Prospectively determining the sample size necessary to pro-
duce some v given a true R2 is another way to carry out sample
size planning. To see how it compares with traditional power

analysis, compare the hashed line with the solid line in Fig. 2.
The two curves track each other quite closely, with v values
generally being smaller than corresponding power values for
small samples. As n increases, a crossover point occurs at which
v is larger than power. As effect size decreases and the number
of independent variables increases, the curves more greatly
diverge, and the crossover point occurs at a larger value of v.
In these situations, it is possible to have excellent power to
reject a null hypothesis under a statistical test using OLS, yet,
for nearly all possible true states of nature, OLS is getting no
closer to the truth than is RLS, which randomizes information
about treatment effects. This is true even for a power of .80
(Fig. 3, lower left-hand graph), a standard benchmark for
adequate statistical power. This discrepancy between v values
and power becomes more pronounced as the number of popu-
lation values to estimate increases.

As an example, suppose a researcher was planning an
experiment with three predictors (p=3) and, a priori, expected
an overall effect size of R2=.05. By plugging these values of p
and R2 into the v equation (using the provided software), it is
straightforward to calibrate total sample size to obtain the
desired level of v. For these values, a sample size of 36
observations per predictor (n=108 total) yields a v of .51. A
sample size of 93 observations per predictor (n=279 total)
yields a more satisfactory v of .80. For this example, a tradi-
tional power analysis would recommend 73 observations per
predictor for a power of .80. Clearly, rules of thumb such as 20
observations per predictor (e.g., Simmons et al., 2011) will not
guarantee a minimally acceptable value of v.

Given that v is generally less than or equal to power for
values<.5, a troubling conclusion emerges. Prior studies have
noted that average statistical power in some areas of psychol-
ogy is at or below .5, with average power from studies with
small effects being even lower (Maxwell, 2004; Sedlmeier &
Gigerenzer, 1989; Tressoldi, 2012). To the extent that these
studies continue to be representative, v<.5, or even v=0, is a
typical condition for published studies in some areas.

To summarize, v can be used in conjunction with traditional
power analyses to set sample size. It is important to note that v
and statistical power are conceptually distinct. Statistical power
corresponds to the probability of detecting an effect using a
null hypothesis test under a specified alpha level. The v mea-
sure, in contrast, speaks to estimation accuracy—that is, how
accurately OLS is estimating the population values, as com-
pared with a benchmark estimator that scrambles the direction-
ality of effects. Again, v is distribution free and in no way
defined in terms of the null hypothesis testing framework.

Using v in a meta-analysis

We have illustrated how v could be applied prospectively to
determine sample size. Alternatively, v could also be applied
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in a meta-analytic fashion. Meta-analytic techniques are
often used to estimate effect sizes for psychological phe-
nomena by pooling similar studies together (Hartung,
Knapp, & Sinha, 2008). Given that v requires an estimate
of overall effect size, R2, one could estimate this parameter
using traditional meta-analytic techniques. Once a good
estimate has been obtained, v could be calculated assuming
various levels of n and p to estimate accuracy and plan
sample sizes for common experiments.

v as a measure of replicability

The replicability of experimental findings is an important
issue that has recently received increased attention after

high-profile failures to reproduce influential results (Ritchie,
Wiseman, & French, 2012). In areas that rely heavily on null
hypothesis testing, replication is typically construed as repeat-
ing the result of a hypothesis test on a new set of data. For
example, if an experiment produces a significant p-value and
another experimenter reruns the experiment but does not
produce a significant p-value, we often conclude that the
experiment did not replicate. This approach is problematic in
some respects. For both the initial result and the replication, it
relies on binary decisions about significance that involve luck.
Sampling variability leads to both type I and type II errors,
which can lead to somewhat perverse conclusions about rep-
licability. For example, if one is replicating an experiment in
which there are multiple treatment groups, one could get
estimates of the true means that are somewhat close to those
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Fig. 2 All nine graphs in this figure plot both v and statistical power
(assuming α=.05) as a function of sample size. Graphs 1–3 consider
regression models with three parameters under “small” (R2=.02),

“medium” (R2= .13), and “large” (R2= .25) effect sizes (Cohen,
1988). Graphs 4–6 consider six parameters under these different effect
sizes, with graphs 7–9 considering nine parameters
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in the original experiment, perhaps well within the original
confidence intervals, and yet fail to obtain a significant p-
value. In this way, a null result can be taken as a failure to
replicate, and accordingly, the replicating experimenter must
make careful statistical power planning decisions to avoid
type II errors.

We suggest another way to conceive of replicability that
does not rely upon hypothesis testing. A result can be said to
be replicable to the extent that the parameter estimates, such
as sample means, remain similar across experimental repli-
cates. For example, suppose that an experimenter were to
run the same experiment under the same conditions many
times, faithfully following all experimental procedures. The
estimates will not be exactly the same on every replicate,
because of sampling variability. Given the factors of sample

size, effect size, and the number of parameters to estimate
(e.g., the number of experimental conditions), the amount
that the estimates vary across replicates will be greater or
smaller. We can quantify the replicability of the experiment
simply as the sampling variance of those estimates across
replicates.

For unbiased estimators such as sample means (and more
generally, OLS), the total variance of the estimates is well-
known to be equivalent to the estimator’s MSE, a metric we
have used throughout in our derivation of v. Put more formally,
for OLS (or any unbiased estimator), MSE is simply the trace
of the covariance matrix of the OLS estimates.MSE is literally
equivalent to the sampling variance of the estimator.
Furthermore, the sampling variance of the estimator is a quan-
tity that, given some effect size estimate, can be calculated
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Fig. 3 All nine graphs in this figure plot both v and statistical power
(assuming α=.05) as a function of sample size. Graphs 1–3 consider
regression models with 11 parameters under “small” (R2= .02),

“medium” (R2= .13), and “large” (R2= .25) effect sizes (Cohen,
1988). Graphs 4–6 consider 14 parameters under these different effect
sizes, with graphs 7–9 considering 18 parameters
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without actually having to run an experiment multiple times. In
the simplest case, the effect size from the single experiment,
corrected for bias, could be used as an estimate of effect size.
Such an approach may overestimate effect sizes, but as is
evident in Fig. 2, it is possible for a statistically significant
result to have unacceptableMSE, as comparedwith RLS, on its
face, given its own effect size, sample size, and number of
parameter estimates. Estimates with such large values of MSE
(total variance) should not be expected to replicate in the first
place; that is, we should not expect future estimates to be
similar to the original estimates.

To clarify, this perspective on replication is concerned only
with the sampling variance of the estimates, and not whether
the initial experimental results were obtained through any
impropriety on the part of the researcher. For example,
Nosek, Spies, and Motyl (2012) described running an exact
replication (n=1,300) of one of their own large experiments
(total n=1,979) that initially found a hypothesized effect, only
to have the effect disappear. The result did not replicate, under
the traditional definition, even though no post hoc tampering
with the data was used to get the original result and the pro-
cedures were carefully reproduced. The culprit was simply
sampling variance. See also Miller (2009) and Miller and
Schwarz (2011) for additional perspectives on this problem.

To summarize, we propose that several statements are
equivalent: The replicability of an experimental result is
the replicability of the estimator itself, which is in turn a
measure of the expected variability of parameter estimates
across experimental replicates, which, for the unbiased esti-
mators that are so ubiquitous in psychology research, is just
the MSE of the estimator (the expected sum of squared
differences between the estimates and their corresponding
true values).

Given its precise definition and meaning, as well as its
fundamental place in statistics, we argue that MSE is under-
appreciated as a measure of replicability. At the same time, it
is not clear that many areas of psychological inquiry are
quantified enough to make sense of whether MSE values
are good or bad. That is, while we can quantify MSE and,
thus, replicability, we are still left with the difficult problem
of deciding whether a given amount ofMSE is satisfactory in
some experimental context. We have argued that v is a
solution to such problems because it provides a minimum
benchmark for the accuracy of OLS: OLS should be used
only under conditions in which it more accurately estimates
population parameters than does an estimator that randomly
determines the relative values of its coefficients (randomly
determines treatment effects). Thus, v can be used as a
measure of replicability that avoids some of the problems
of traditional approaches. Just as v is a minimum standard for
accuracy when determining treatment effects, v also has the
interpretation of a standard on whether findings of treatment
effects have minimally acceptable replicability—that is, a

standard on acceptable sampling variance. If estimates that
yield random treatment effects are closer to the true param-
eter values on average, we should not expect a finding to
replicate.

For the biased RLS estimator, MSE is a function of both
squared bias and variance and, hence, should not be equated
with the replicability of RLS. We use the MSE of RLS only
as a benchmark for determining the acceptability of theMSE
of OLS, which is, in turn, the replicability of OLS. In this
way, v can be taken as a measure of replicability.

General discussion

The v measure evaluates the accuracy of standard esti-
mation techniques, such as sample means and regression
coefficients, relative to a benchmark estimator. Our anal-
ysis indicates that standard estimation techniques can be
extremely inaccurate, particularly for studying small- and
medium-sized effects. Current practice in psychology
would not preclude publishing findings under conditions
when v<.5, or even v=0. As is shown in Figs. 2 and 3,
v=0 does not imply nonzero power or even unusually
low power for many areas of psychology. Yet, in these
situations, it is certain that the ubiquitous OLS estimator
will be less accurate, on average, than our RLS estima-
tor, no matter what the true population values are.
Furthermore, we stress that these arguments are made
under favorable assumptions for standard methods, in-
cluding that all of their sampling assumptions have been
satisfied, while v itself makes no assumptions regarding
the specific underlying distributional form. The potential-
ly serious problem of poor v-accuracy comes into play
before we even worry about complications such as re-
searcher degrees of freedom (Simmons et al., 2011) and
the various types of publication bias (Francis, 2012a, b).
Our findings, compounded with human error, suggest
that the problem of inaccurate and irreplicable studies
may be even graver than previously imagined.

Many readers may have already had the intuition that a
significant result from a relatively small sample might not
be trustworthy. But how small of a sample is too small, and
given what effect size? The v measure gives a principled
answer to these questions that is not ad hoc but, rather,
derived from a basic argument about what sort of bench-
marks OLS estimates should surpass in accuracy. For small
to medium effect sizes, the requisite sample size for esti-
mates to be trustworthy can be surprisingly large. In this
way, v adds to the literature documenting the statistical
challenges of estimating small effects (see Gelman &
Weakliem, 2009) and the importance of basing sample
size considerations on the accuracy of parameter estimation
(Kelley & Maxwell, 2003; Lai & Kelley, 2012).
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From a practical standpoint, the v measure can aid in de-
cisions that are inherently subjective in nature. For example,
when planning sample size, researchers can calibrate
according to how wide they desire their confidence intervals
to be (Kelley & Maxwell, 2003). Yet, what one researcher
considers to be a narrow confidence interval may be unac-
ceptably wide to someone else. Most areas of psychology are
not quantified to the extent that there are standards as to what
is or is not a narrow confidence interval. In this case, RLS
provides a meaningful benchmark. If we agree that OLS
should be more accurate than RLS, then a “narrow” confi-
dence interval is, at a minimum, one in which the OLS
estimates are more accurate than RLS—hence, large values
of v. In this way, the v measure could be used in conjunction
with existing methods to determine sample sizes according to
confidence interval width (e.g., Kelley & Maxwell, 2003).

The v measure is defined on the full linear model under
consideration, rather than on particular subsets or subtests
within the model. For example, if one runs a factorial
ANOVA, several partial effects could be measured, and v
is not unique to any of them. Rather, it applies to all of them
because it measures the accuracy of the OLS estimator on
the full ANOVA model. Thus, where we have referred to R2

or effect size, we mean the proportion of variance explained
by the model, not a partial effect size.

In its present formulation, v and RLS are applicable to the
linear model. The concept, however, could be generalized to
other statistical models. The most obvious future generaliza-
tion is the multivariate general linear model, in which there are
multiple dependent variables. Such an advance would require
more mathematical work, but the general ideas of v could be
applied. Extending to this more general model would allow
for an analysis of the accuracy of estimates obtained from
repeated measures designs and growth models.

The v measure is based upon the RLS estimator, which
utilizes a least-squares argument subject to uniform random
weights. A key feature of this estimator is that no matter
how much data are collected, the relative signs, orderings,
and magnitudes of the coefficients are always determined
randomly; that is, RLS has no convergence properties with
regard to the relative values of its coefficients. Future work
could explore alternative methods of scaling the random
vector a that do not depend upon a least squares
argument—that is, other choices of scaling factor k.
Indeed, there may exist alternative estimators that yield
random relationships among the parameter estimates that
are even more accurate than RLS. In this way, our approach
to v was conservative in that we did not explicitly optimize
the RLS estimator against OLS to make it the most difficult
such benchmark possible.

Recent articles in the popular press (e.g., Carey, 2011;
Lehrer, 2010) and peer-reviewed journals (e.g., John,
Loewenstein, & Prelec, 2012; Simmons et al., 2011) have

ignited a discussion within the scientific community about
when empirical results should be believed. This debate has
focused almost entirely on human error—that is, activities
endemic to the researchers themselves, such as publication bias
and researcher degrees of freedom. While we agree that these
are problems, our results demonstrate a more basic problem.
Even if all practices related to data collection and publication
were cleaned up, experimental results based on unacceptably
inaccurate estimates would remain. To this problem, there may
be no low-cost solutions; our statistical techniques may require
larger samples and less measurement error to work correctly.
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Appendix

In this appendix, we summarize and apply the results of
Davis-Stober et al. (2010a) and Davis-Stober (2011) to
derive the v measure for orthogonal designs and lay out an
algorithm that calculates v for the nonorthogonal case. We
refer the reader to the original papers for the proofs of the
various results and theorems.

Modeling assumptions As was stated earlier, u operates with-
in the standard linear model, y ¼ Xb þ e , where X is a n×p
design matrix, β is a p×1 vector of population weights, and
y � Xb;σ2In�nð Þ with i.i.d. sampling. Unless stated otherwise,
we assume that X is of full rank. We assume throughout that
the length of the population parameter β is finite. Let bk k � b,
where b 2 R

þ and where “ �k k” denotes the standard Euclidean
norm. We also assume that y is standardized in z-score format.
A design matrix, X, is said to be orthogonal if X′X is a scalar
multiple of the identity matrix. For example, under multiple
regression, we assume that all predictor variables are stan-
dardized and uncorrelated; thus, X 0

X ¼ n� 1ð ÞRXX , where Rxx

is the predictor intercorrelation matrix; under a balanced one-
way ANOVA design, we would use the standard X formula-
tion giving X

0
X ¼ n

pIp�p (Muller & Fetterman, 2003).

Definition 1 (Davis-Stober et al., 2010a). Let a be a fixed
p×1 vector of weights, with ak k > 0 . Then the improper
least squares (ILS) estimator is defined as follows:

bbILS ¼ a a
0
X

0
Xa

� ��1
a
0
X

0
y;

and can be considered as a special case of general constrained
least squares estimation (Amemiya, 1985; Chipman & Rao,
1964). To place ILS in competition with OLS, we must first
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determine the MSE of ILS with the following result.
Given a choice of a and values of X and σ2, it is routine
to show that the MSE incurred by the ILS estimator is the
following sum:

MSEILS ¼ b
0
Wb þ a

0
aσ2

a0X 0Xa
; ð4Þ

where W is a symmetric positive semidefinite matrix

defined as W ¼ Q
0
Q� Q� Q

0þIp�p with Q ¼ a a
0
X

0
Xa

� ��1
a

0
X

0

X .

Given values of a, σ2, and X, we can consider theMSE of
the ILS estimator as a function of β. This key result allows
us to directly compare the MSE of ILS with that of OLS,
which is well known to be

MSEOLS ¼ σ2tr X
0
X

� ��1
;

where “tr” denotes the trace of a square matrix.
Given a bound, b, on the length of the population β

parameter, the set of all possible β forms a hypersphere of
dimension p with radius b (Davis-Stober, 2011). Davis-
Stober demonstrated how we can subtract the MSE of OLS
from that of ILS and solve for the set of population β within
this hypersphere such that MSEILS ≤ MSEOLS. This set,
denoted C, is as follows:

C ¼ b 2 R
p : b

0
Wb � σ2tr X

0
X

� ��1
� a

0
aσ2

a0X 0Xa
; bk k � b

� �
:

The set C takes the form of a p-dimensional ellipsoidal
hypercylinder bounded by the p-dimensional hypersphere of
radius b. See Davis-Stober (2011) for a full discussion of
this geometry.

The key question for our analysis is the following: What
proportion of the hypersphere of all possible β does the set
C occupy? Let V denote this proportion. Directly solving for
V for general C is analytically intractable (Davis-Stober,
2011). However, Davis-Stober provides analytic upper and
lower bounds on this value by constructing two bounding
setsC− andC+. Both of these sets are spherical hypercylinders
that satisfy the relation C� � C � Cþ, where “ � ” denotes
the (nonstrict) subset relation. The bounding sets, C− and
C+, are each defined in terms of p (number of parameters),
b (bound on the length of the population β), and the
primary angle of the spherical hypercylinder, α. The
primary angle α determines the length of all radii in the
spherical hypercylinder that are orthogonal to the primary
axis, which is always equal to a (Davis-Stober, 2011). The
length of these radii are thus equal to bsin(α). Please note
that the parameter α in this context is unrelated to the
usual α parameter in the null hypothesis testing frame-
work. Davis-Stober solved for the α parameters for the
bounding sets, C− and C+, which are denoted α1 and α2,
respectively. We briefly restate these results below.

Result 1. (Davis-Stober, 2011). For the lower bounding set
C−, α1 is as follows:

a1 ¼ cos�1 1� x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x1 1� x1ð Þp

 !
;

where x1 ¼ d1�
ffiffiffiffiffiffiffiffiffi
d1�d21

p
2d1�1 ; d1 ¼ min σ2w1

b2 ; 1
n o

, and

w1 ¼ tr X
0
Xð Þ�1

� �
a
0
X

0
Xað Þ2� ak k2a0X 0

Xa

ak k2a0 X 0Xð Þ2a
� �

.

Result 2. (Davis-Stober, 2011). For the upper bounding set
C+, α2, is as follows:

a2 ¼ cos�1 1� x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x2 1� x2ð Þp

 !
;

where x2 ¼ d2�
ffiffiffiffiffiffiffiffiffi
d2�d22

p
2d2�1 ; d2 ¼ min σ2w2

b2 ; 1
n o

, and

w2 ¼ a
0
X

0
Xað Þtr X

0
Xð Þ�1

� �
� ak k2

a0X 0Xað Þ
� �

.

To place upper and lower bounds on V, we must calculate
the proportion of the hypersphere of all possible βs that C−

and C+ occupy. The following theorem provides exactly
this. Specifically, it allows us to calculate the relative vol-
ume of any (full-dimensional) spherical hypercylinder
bounded by a (full-dimensional) hypersphere as a function
of p, b, and α.

Theorem 1. (Davis-Stober, 2011). Let Vα,p be the volume
of a spherical hype-cylinder with radius
length equal to bsin(α) and center axis equal
to a , bounded by the p-dimensional

hypersphere of radius b divided by the total
volume of the p-dimensional hypersphere
of radius b. Then Va; p is the following

real-valued function of alpha and p:

Va;p ¼ 1� 2 cos að Þ* pþ2
2

� �
ffiffiffi
p

p
* pþ1

2

� �
� 2F1

1

2
;
1� p

2
;
3

2
; cos2 að Þ

� �
� sin að Þp�1

	 

;

ð5Þ

where 0 � a � p
2, 2F1 �; �; �; �ð Þ is the Gaussian

hypergeometric function and Γ(·) is the gamma
function.

To apply these results, we must first pro-
vide a value for b, the upper bound on the
length of β. Generally speaking, we can apply
the fundamental regression equation, R2 ¼ b

0

RXX b. Since RXX is positive definite, we have
bk k2 � R2

1min
, where 1min is a minimal eigenvalue

of RXX, and thus we let b2 ¼ R2

1min . Under the

orthogonal regression case, this simplifies
to b2=R2. For orthogonal ANOVA designs,
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we can use the equation R2 ¼ b
0
X

0
Xb

n�1 and

thus obtain R2 n�1ð Þp
n ¼ bk k2 and set b2 ¼ R2

n�1ð Þp
n . Either operation provides exactly the

same results in the following derivations.
By applying Theorem 1 to the bounding sets,

C− and C+, we obtain, respectively, lower and
upper bounds on V, the proportion of population
β such thatMSEILS � MSEOLS. These bounds are
denoted V− and V+. The following theorem
establishes when C� ¼ C ¼ Cþ and, there-
fore, V−=V=V+.

Theorem 2. (Davis-Stober, 2011). Assume that a is an
eigenvector of the matrix X′X. Then C� ¼ Cþ
¼ C and V� ¼ Vþ ¼ V.

For the orthogonal case, X′X is a scalar
multiple of the identity matrix, Ip×p, and,
hence, all possible as are eigenvectors of the
X′X matrix. Therefore α1=α2 for all as. Let
a* ¼ a1 ¼ a2. Then, under the orthogonal case,
α* is as follows:

a* ¼ cos�1 1� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z 1� zð Þp

 !
;

z ¼ g�
ffiffiffiffiffiffiffiffi
g�g2

p
2g�1 ; g ¼ min

p�1ð Þ 1�R2ð Þ
n�pð ÞR2 ; 1

� �
. It is im-

portant to note that the a terms drop out when
solving for α* under the orthogonal case. In
other words, V is exact and invariant under
any choice of a and is calculated via α* and
Equation 5. This leads to our main result.

Main result on the RLS estimator Assume an orthogonal
design. Let a be a p-dimensional random vector uniformly
distributed over the surface of the unit p-dimensional
hypersphere centered at the origin. Let the RLS estimator
be defined as the ILS estimator with a obtained from a
single random draw of a. Then, assuming fixed values of
R2, n, and p, the distribution of V values under the RLS
estimator is degenerate, with all V values being equal for all
possible draws from a. Thus, under the RLS estimator, V is
exact and is calculated via α* and Theorem 1.

It is important to note that it suffices to sample a uni-
formly from a unit hypersphere centered at the origin, since
the ILS estimator is invariant under scalar multiplication of
a (see Davis-Stober et al., 2010a). Under different choices of
a, as in the RLS estimator, the main axis of the spherical
hypercylinder C will always be the a that was sampled from
a; however, the shape and relative volume of C will be
invariant under any choice of a. Thus, the relative volume
of the set C is exact under the RLS estimator and is a

function of only R2, n, and p. Finally, we define v (as
defined in the main text) as the complement of V—that is,
v :¼ 1� V . This simple transformation orients the results in
terms of the proportion of population β which favor OLS
over RLS in terms of MSE.

Nonorthogonal case For the nonorthogonal case, the distri-
bution of V values is not degenerate; that is, different sam-
pled choices of a will yield different V values. We estimate v
for the RLS estimator via the following Monte Carlo algo-
rithm. For cases where X′X−1 is not full rank, we apply the
Moore–Penrose inverse of X′X.

Input p, n, adjusted R2, and X′X.

1. Uniformly sample k-many a vectors from the surface of
p-dimensional unit hypersphere of unit radius and di-
mension p (or r for non-full rank design matrices)
centered at the origin. Let ai denote the i

th sample.
2. Calculate V− and V+ for each ai as described above. Let

V�;Vþð Þi denote the pair associated with each sampled ai
.

3. Calculate Vi ¼ Mean V�;Vþð Þi; 8i 2 1; 2; . . . ; kf g , where
Mean(·) denotes the mean of a set.

4. Calculate Vestimate ¼ Mean Vi; 8i 2 1; 2; . . . ; kf gð Þ.
5. Return v ¼ 1� Vestimate.

This algorithm yields an estimate of the expected propor-
tion of population β such thatMSEOLS � MSERLS. The number
of samples, k, necessary to estimate v within appropriate
error bounds depends on the dimension of the space, p. We
recommend a minimum of k=10,000 samples for relatively
large values of p—for example, p=10. We also note that for
many X matrices, b2 ¼ R2

λmin
may be an overly conservative

bound on the true length of β. We suggest that b2 ¼ R2

1*
, where

1* ¼ 1
p

Pp
i¼1 1i, may be more appropriate.
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